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Abstract

In this work, a recombinant plum pox virus (PPV,
Sharka) encoding green fluorescent protein is used to
study its effect on antioxidant enzymes and protein
expression at the subcellular level in pea plants (cv.
Alaska). PPV had produced chlorotic spots as well as
necrotic spots in the oldest leaves at 13-15 d post-
inoculation. At 15 d post-inoculation, PPV was present
in the chlorotic and necrotic areas, as shown by the
fluorescence signal produced by the presence of the
green fluorescent protein. In the same areas, an
accumulation of reactive oxygen species was noticed.
Studies with laser confocal and electron microscopy
demonstrated that PPV accumulated in the cytosol of
infected cells. In addition, PPV infection produced an
alteration in the chloroplast ultrastructure, giving rise
to dilated thylakoids, an increase in the number of
plastoglobuli, and a decreased amount of starch
content. At 3 d post-inoculation, although no changes
in the oxidative stress parameters were observed, an
increase in the chloroplastic hydrogen peroxide levels
was observed that correlated with a decrease in the
enzymatic mechanisms involved in its elimination
(ascorbate peroxidase and peroxidase) in this cell
compartment. These results indicate that an alteration
in the chloroplastic metabolism is produced in the
early response to PPV. This oxidative stress is more
pronounced during the development of the disease (15
d post-inoculation) judging from the increase in oxida-

tive stress parameters as well as the imbalance in the
antioxidative systems, mainly at the chloroplastic
level. Finally, proteomic analyses showed that most of
the changes produced by PPV infection with regard to
protein expression at the subcellular level were related
mainly to photosynthesis and carbohydrate metabo-
lism. It seems that PPV infection has some effect on
PSII, directly or indirectly, by decreasing the amount of
Rubisco, oxygen-evolving enhancer, and PSII stability
factor proteins. The results indicate that Sharka symp-
toms observed in pea leaves could be due to an
imbalance in antioxidant systems as well as to an
increased generation of reactive oxygen species in
chloroplasts, induced probably by a disturbance of the
electron transport chain, suggesting that chloroplasts
can be a source of oxidative stress during viral
disease development.

Key words: 2D electrophoresis, oxidative stress, Pisum

sativum L., plum pox virus, sharka.

Introduction

Sharka, a disease caused by plum pox virus (PPV), is
a serious limiting factor for temperate fruit production
in affected areas, resulting in severe economic losses in
Prunus species including apricot and peach (Kolber,
2001). PPV also infects herbaceous plants such as
Nicotiana clevelandii, N. benthamiana, and Chenopodium
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foetidum (Van Oosten, 1971; Németh, 1986). These
species have been used as indicator plants in detection
and localization studies (Martinez-Gomez and Dicenta,
2001). Some pea cultivars, such as cv. Colmo and cv.
Alaska, have been described as very susceptible to PPV
(Morvan and Chastelliere, 1980). However, until now,
almost no data about the biochemical and physiological
responses of PPV-susceptible herbaceous plants to PPV
infection have been available in the scientific literature.
The only published information about the effect of PPV
infection on some biochemical parameters from suscep-
tible herbaceous plants is limited to some changes in the
isozyme profile of peroxidase (POX), glutamate oxalace-
tate transaminase, and estereases in C. foetidum and
N. clevelandii (Visedo et al., 1990, 1991).

In some compatible virus—host plant interactions, an
oxidative stress is produced (Riedle-Bauer, 2000; Clarke
et al., 2002; Hernandez et al., 2004, 2006; Diaz-Vivancos
et al., 2006). In previous work it was observed that PPV
infection produced an oxidative stress only in susceptible
Prunus species, manifested as an increase in different
oxidative stress parameters (lipid peroxidation, protein
oxidation, and electrolyte leakage), accumulation of
hydrogen peroxide (H,O,), and an imbalance in the
antioxidative systems at the subcellular level. These
effects were not produced in a resistant apricot cultivar,
where the PPV inoculation did not produce any effect on
the oxidative stress parameters and some antioxidant
enzymes even increased in soluble fractions and in the
apoplastic space (Diaz-Vivancos et al., 2006; Hernandez
et al., 2006). However, different factors, including the use
of woody plants, the mode of inoculation and the time
which passed between the subjection of the plants to
artificial dormancy and the growth of the first expanding
leaves (Martinez-Gémez and Dicenta, 2000), made it
difficult to study the early responses to PPV infection,
and results were obtained for long-term PPV infection
(Hernandez et al., 20015, 2004, 2006; Diaz-Vivancos
et al., 2006). So, the use of a PPV-susceptible herbaceous
plant can permit the study of the biochemical and
physiological effects of PPV infection in a shorter term
than for Prunus plants.

Recombinant green fluorescent protein (GFP)-tagged
viruses have been used intensively to study viral invasion
in different plant/virus pathosystems. Recently, different
authors have used the recombinant PPV-encoding GFP to
study the plant—PPV interaction in Prunus and Nicotiana
species (Lansac et al., 2005; Alamillo et al., 2006).

High-throughput proteomic analysis is a powerful tool
to study changes in accumulation levels and post-trans-
lational modifications of proteins in particular tissues
under given conditions (Campo et al., 2004). In plants,
the proteomic approach has been employed to study
alterations in cellular protein content in response to
various biotic and abiotic stresses (Campo et al., 2004;

Dani et al., 2005; Casado-Vela et al., 2006; Diaz-
Vivancos et al., 2006). Moreover, subcellular fraction-
ation provides information about protein localization and
allows new insights into pathway compartmentalization
and protein sorting (Baginsky and Gruissem, 2004).

In the present work, using a GFP-tagged recombinant
virus, the physiological and biochemical responses of pea
plants to PPV infection are studied over a shorter time
than would be the case with woody plants. Changes in the
antioxidant systems and protein expression were analysed
at the subcellular level. In addition, the distribution of the
virus was analysed by using different detection techni-
ques, in order to deepen our knowledge of the plant—PPV
interaction.

Materials and methods

Plant material

Pea (Pisum sativum L cv. Alaska.) seeds were surface-sterilized
(10%, v/v, sodium hypochlorite for 2 min), germinated, and grown
in vermiculite. Vigorous seedlings were selected for hydroponic
culture in a growth chamber. Plants were cultivated in aerated
distilled water for 7 d and then were transferred to aerated half-
strength Hoagland solution (Hernandez er al., 1995; Martinez-
Cordero et al., 2005) for the rest of the experiment. The growth
chamber was set at 25/18 °C, 80% relative humidit?/, and a 16/8 h
photoperiod at a light intensity of 200 pmol m ™2 s™".

GFP-tagged recombinant PPV isolate

Recombinant PPV encoding GFP (PPVPSI4-RnGFPs, derived from
a Marcus-type isolate) (B Salvador et al., unpublished results) was
used to inoculate the pea plants. This isolate is kept in the Centro
Nacional de Biotecnologia (CNB-CSIC), Madrid (Spain).

Plant inoculation

Plants were inoculated on the 5th day after addition of the half-
strength Hoagland solution. The first inoculum source used in this
work was Nicotiana benthamiana plants infected with PPVPSI4-
RnGFPs. Later, infected pea plants were used for the following
inoculations. The infected plants, used as inoculum source, were
homogenized (1/2 w/v) in K-phosphate buffer, pH 7.2, containing
benthonite. The crude homogenate was filtered through two layers
of cheesecloth and directly used for mechanical inoculation of pea
seedlings, using carborundum. Controls were mock-inoculated by
using a crude extract from non-inoculated pea leaves. Plants were
analysed at the initiation phase [3 d post-inoculation (dpi), early
response] and the elaboration phase (15 dpi, disease development).

PPV detection

An ELISA-DASI (double antibody sandwich indirect) test was
applied to the leaves, using the 5B-IVIA monoclonal antibody
against the coat protein (CP) of PPV (Durviz, Madrid, Spain)
(Hernandez et al., 2004). For the detection of PPV nucleic acid, an
RT-PCR analysis was carried out using total RNA extracted using
the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Two
specific primers within the CP gene, VP337 (CTCTGTGTCCTCT-
TCTTGTG), complementary to positions 9487-9508 of genomic
PPV RNA, and VP338 (CAATAAAGCCATTGTTGGATC), ho-
mologous to positions 9194-9216, were used. The PCR parameters
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were: one cycle at 94 °C for 2 min, followed by 30 cycles of 94 °C
for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and finally an extension
step at 72 °C for 5 min. Amplified products were electrophoresed in
1% agarose gels, in 40 mM TRIS-acetate and 1 mM EDTA, pH 8.0,
and stained with ethidium bromide.

Fluorescence measurements

Ten control and PPV-infected pea plants were analysed in every
experiment. Modulated chlorophyll fluorescence was measured in
dark-adapted pea leaves at midday, using a chlorophyll fluorometer
0OS-30 (Optisciences, USA) with an excitation source intensity of
2000 pmol m~2 s~'. The quantum yield of photosystem II (PSII)
photochemistry (®psy), the maximum quantum yield of PSII
(F\/F ), the non-photochemical quenching (NPQ), and the photo-
chemical quenching coefficient (g,) were calculated as described
previously (Herndndez et al., 2004). The efficiency of excitation
energy capture by PSII, corresponding to the probability that an
absorbed photon reaches the PSII reaction centres, was calculated in
light-adapted leaves as F/F ,=(F —F)/Fn. The minimal ‘dark’
fluorescence level following illumination () was measured in the
presence of a background far-red light, to favour rapid oxidation of
intersystem electron carriers.

Isolation of cell fractions

For the isolation of cell fractions, 3 dpi and 15 dpi pea plants were
used. At 3 dpi all the leaves of the pea seedling were used. At 15
dpi only systemic leaves showing symptoms were used, and similar
leaves were used in control plants. All operations were carried out
at 04 °C. Soluble fractions were obtained from pea leaves (15 g)
by differential centrifugation according to published protocols
(Hernandez et al., 2004, 2006). For ascorbate peroxidase (APX)
activity, 20 mM ascorbate was added. The resulting supernatant was
partially purified in Sephadex G-25 NAP columns (GE Healthcare,
Madrid, Spain) equilibrated with 50 mM K-phosphate buffer pH 7.0
(with or without 2 mM ascorbate), and was considered as the
soluble fraction for use in different assays. Chloroplasts were
isolated by differential and density-gradient centrifugation (Hernan-
dez et al., 2004). A resuspension medium containing 20% (v/v)
Percoll (GE Healthcare) was layered under the chloroplast suspen-
sion, by slowly pipetting 10 ml into the bottom of the tube. Tubes
were centrifuged at 1700 g for 1 min. The pellet of intact
chloroplasts was resuspended in 1 ml of washing medium, without
BSA, and used for enzyme assays. Chloroplasts were lysed by
incubation (v/v) with 10 mM K-phosphate buffer, pH 7.0,
containing 0.2% (v/v) Triton X-100, for 1 h. After incubation, the
lysed chloroplast preparations were centrifuged at 100 000 g for 15
min (Optima Max ultracentrifuge, Beckman, USA) and the super-
natants obtained were partially purified in Sephadex G-25 NAP
columns (GE Healthcare) equilibrated with 50 mM K-phosphate
buffer pH 7.0 (with or without 2 mM ascorbate).

Enzymatic assays

Catalase, superoxide dismutase (SOD), POX, the ascorbate-gluta-
thione cycle enzymes as well as the glucose-6P-dehydrogenase
(G6PDH) activity were measured as described in Herndndez et al.
(2000, 2001h, 2004). APX was measured in the presence and
absence of the specific inhibitor p-hydroxymercuribenzoic acid
(PHMB; 0.5 mM). pHMB-sensitive APX activity was considered
as due to class I APX, whereas pHMB-insensitive APX activity is
due to a class III POX that can use ascorbate as reducing power
(Hernandez et al., 2004). Glutathione peroxidase (GPX) activity was
determined by measuring the formation of oxidized glutathione
coupled to the oxidation of NADPH, at 340 nm, carried out by
commercial glutathione reductase (GR; Sigma) according to Over-

baugh and Fall (1985). Glutathione S-transferase (GST) activity was
analysed according to Habing and Jakoby (1981), based on the
increase of absorbance at 340 nm due to the formation of a conjugated
compound by the reaction of GSH with 1-chloro-2,4-dinitrobenzene.

Determination of H,O, and oxidative stress parameters

The measurement of H,O, contents in soluble fractions and
chloroplasts was based on the peroxide-mediated oxidation of Fe**,
followed by the reaction of Fe®* with xylenol orange (Bellicampi
et al., 2000). The extent of lipid peroxidation and protein oxidation
(carbonyl-protein content) in pea leaves was estimated as described
in Hernandez et al. (2004). Electrolyte leakage in pea leaves was
measured as described previously (Diaz-Vivancos et al., 2006).

Histochemical detection of H,O, and superoxide radicals (Oz)
in pea leaves

The histochemical detection of H,O, in pea leaves was performed
using endogenous POX-dependent in situ histochemical staining, in
which whole leaves were vacuum-infiltrated with 0.1 mg ml™'
3, 3’-diaminobenzidine in 50 mM TRIS-acetate buffer (pH 5.0) and
incubated at 25 °C, in the dark, for 24 h. Controls were performed
in the presence of 10 mM ascorbic acid (Hernandez et al., 2001a).
The histochemical detection of O; was performed by infiltrating
leaf quarters directly with 0.1 mg ml~' NBT in 25 mM K-HEPES
buffer (pH 7.6) and incubating at 25 °C in the dark for 2 h
(Hernandez et al., 2001a). In both cases, leaves were rinsed in 80 %
(v/v) ethanol for 10 min at 70 °C, mounted in lactic acid:phenol:-
water (1:1:1, v/v/v), and photographed directly using an Olympus
SZX PT stereomicroscope.

Fluorescence microscopy

The in vivo analysis of GFP protein in infected pea leaves was
performed with a fluorescence stereomicroscope (Leica MZ FLIII),
using a fluorescence filter for GFP at 425/60 nm excitation and
a 480 nm blockade. The images were captured with a digital camera
(Leica DL500) attached to the magnifying lens.

Confocal laser microscopy

A Leica TCS SP2 laser confocal microscope (Leica Microsystem
Heidelberg GmbH) was used for GFP localization in pea leaves
infected with the GFP-tagged PPV. The excitation energy was
produced by an argon laser at 488 nm, and the band in the range
505-525 nm was observed. A pinhole of 120 nm was used. For the
cellular localization of the GFP-tagged PPV, Normansky micros-
copy was used. Afterwards, the images were analysed using the
system’s own software.

Transmission electron microscopy

For microscopy, samples were fixed for 2.5 h, at 4 °C, ina 0.1 M
Na-phosphate-buffered (pH 7.2) mixture of 2.5% glutaraldehyde
and 4% paraformaldehyde (Morales et al., 2001). Tissue was post-
fixed with 1% osmium tetroxide, for 2 h. The samples were then
dehydrated in a graded alcohol series and embedded in Spurr’s
resin. Blocks were sectioned on a Reichert ultramicrotome
(Germany). Thin sections for transmission electron microscopy
were placed on copper grids and stained with uranyl acetate,
followed by lead citrate. The ultrastructure of the tissue was
observed with a Philip Tecnai electron microscope (Germany).

Electrophoretic analyses

Soluble fractions or lysed chloroplasts were subjected to a cleaning
procedure by using the CleanUp kit® (Madrid, Spain). The proteins
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obtained were resuspended in Destreak” rehydration solution (GE
Healthcare, Madrid, Spain) containing Destreak Reagent (GE
Healthcare). For 2D electrophoresis, proteins were separated
initially according to isoelectric focusing in the first dimension.
Isoelectric focusing was carried out using 150 pg samples of soluble
fractions or chloroplastic proteins, in gel strips with an immobilized
linear pH gradient of 4-7 (Bio-Rad) (Diaz-Vivancos et al., 2006).
The second dimension (SDS-PAGE) was performed as described
previously (Diaz-Vivancos et al., 2006). Gels were stained with
Bio-Safe = Coomassie G-250 (Bio-Rad). Experiments were carried
out three times. Gels were scanned and analysed by using the
PDQuest software (Bio-Rad). Spots, where intensity increased or
decreased strongly (3-fold), were excised from the gels, and
identified by MALDI-TOF and ion trap analysis in the Spanish
National Cancer Research Centre (CNIO, Madrid, Spain).

Results

PPV localization and cell structure modifications
associated with PPV infection

Sharka symptoms appeared in pea leaves at 13—15 dpi,
and consisted of chlorotic spots in systemic leaves as well
as necrotic spots in the oldest systemic leaves (Fig. 1). In
addition, PPV presence in leaves was confirmed by an

Fig. 1. Sharka symptoms in PPV-infected plants in the phase of disease
development (15 dpi): (A) infected plants showing chlorotic spots; (B)
infected plants showing necrotic spots in the oldest leaves.

ELISA-DASI test (presence of PPV CP) and RT-PCR
analysis (presence of PPV nucleic acid). At 3 dpi, plants
were weakly RT-PCR positive, showing a weak band
corresponding to the nucleic acid amplification of the
virus (not shown). However, at 15 dpi, a strong band
corresponding to the nucleic acid of the virus was
observed, confirming that the number of virus particles
increased with the time of infection (data not shown). In
the same way, the ELISA test correlated with the data
obtained by RT-PCR. At 3 dpi, only some inoculated
plants were ELISA-positive (considering ‘positive’ as
double the absorbance obtained with control, non-
infected samples) (Table 1). However, at 15 dpi, infected
leaves were strongly ELISA-positive, showing an optical
density increase of 40-fold, relative to control leaves
(Table 1).

At 15 dpi, the observation of infected leaves proved that
PPV was present in the chlorotic and necrotic areas, as
shown by the fluorescence signal produced by the
presence of the GFP (see Fig. 2C, D, in relation to the
control shown in A, B). The chlorotic symptoms appeared
near the minor veins and in the same areas accumulation
of H,O, and O3, detected by histochemical analyses, was
noticed (in Fig. 3 compare B, C with controls shown in A,
D). H,0O, accumulation appeared as a red-brown staining
due to diaminobenzidine polymerization in the presence
of H,O, and endogenous POX (Fig. 3B). This staining
seemed to be due to H,O, since it was totally suppressed
by 10 mM ascorbic acid (Fig. 3C). Superoxide accumula-
tion appeared as a dark-blue staining due to the reduction
of NBT by O3 (Fig. 3E).

The confocal laser microscopy studies demonstrated the
distribution of the GFP signal in the cytosol of the
infected cells, near the cell wall (in Fig. 4 compare B, E
with the control in D), which suggests the presence of
PPV in this compartment. Likewise, its presence was
observed in the vascular bundles in the associated cells

Table 1. PPV detection in inoculated and control pea (cv.
Alaska) plants

Number of plants giving positive results by ELISA and/or RT-PCR
analysis. In the initial phase of the infection process (3 dpi), both
inoculated and systemic leaves were assayed. In the phase of disease
development (15 dpi), only systemic leaves were analysed.

Evaluated ~ Symptoms® ELISA” RT-PCR
plants
3 DPI
Control 10 0 -(0.139) -
Inoculated 10 0 + (0.220-0.280) +
15 DPI
Control 10 0 —(0.101) —
Inoculated 10 5 + (3.980) +

¢ Symptoms intensity on a scale from 0 (no symptoms) to 5 (maxi-
mum intensity).
» Mean optical density of ELISA at 405 nm, after 60 min.
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Fig. 2. Localization of PPV (PPVPSI4-RnGFPs) expressing GFP in pea leaves, under a fluorescence microscope (A, C) in the chlorotic areas, under
visible light (B, D). Control plants (A, B); PPV-inoculated plants (C, D). Arrows show the fluorescence signal produced by the presence of the GFP
in the chlorotic area (central arrow in Fig. 3C) and in the necrotic areas (left bottom corner in Fig. 3C). Pea leaves in the phase of disease

development (15 dpi) were used.

Fig. 3. Effect of PPV infection on H,O, (A, B, C) and O; (D, E) accumulation in pea leaves, detected by histochemical staining with DAB and
NBT, respectively. (A) DAB-staining of a control pea leaf; (B) DAB-staining of a PPV-infected pea leaf; (C) DAB-staining of a PPV-infected pea
leaf in the presence of ascorbate; (D) NBT-staining of a control pea leaf; (E) NBT-staining of a PPV-infected pea leaf. Pea leaves in the phase of

disease development (15 dpi) were used.

(parenchyma and transfer cells) but not in the xylem
vessels (compare C and F in Fig. 4).

As mentioned above, PPV appeared to infect all cell
types (Fig. 5A, E, F, G, H), but it was not present in the
sieve tube elements nor in the xylematic vessels (Fig. 5D).
The virus was present mainly in transfer cells and

parenchymatic cells (Fig. 5A, D, G). PPV appeared as
pinwheel-shaped cytoplasmic inclusions, typical of poty-
viral infections (Riedel et al., 1998) (Fig. SE, F). Like-
wise, viral particles were also observed in the cytosol
(Fig. 5G, I). When these structures were near the cell wall
they were oriented perpendicularly and, in some cases,
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Fig. 4. Images taken under a laser confocal microscope of pea leaves systemically infected with PPV: control leaves as negative control (D); DIC
(differential interference contrast) image showing stomata (A); detail of mesophyll cell showing the presence of the GFP signal in the cytoplasm (E);
DIC image of same cell (B); vascular bundle showing a positive location of the virus (F); and DIC image of the same area (C). S, Stomata; MS,
mesophyll cell; X, xylem. Pea leaves in the phase of disease development (15 dpi) were used.

their presence was detected near the plasmodesmata (Fig.
5T). Chloroplasts from cells associated with the vascular
system were affected most by PPV infection; they had
dilated thylakoids, lower starch content, and a higher
number of plastoglobuli (Fig. 5B) in relation to chloro-
plasts from control plants (Fig. 5C). However, chloro-
plasts from other cell types (i.e. mesophyll cells) showed
less damage (not shown).

Biochemical and physiological effects of PPV
infection in pea

At 3 dpi, no significant changes in fluorescence parame-
ters due to the effect of PPV inoculation were observed
(data not shown). At 15 dpi, no evident changes in the
PSII efficiency (F,/F,), the efficiency of excitation energy
capture by PSII (F\/F},), the quantum yield of PSII
electron transport (®pgyp), or the photochemical quenching
coefficient (¢,,) were produced. However, a decrease in the
NPQ parameter was noticed (Table 2). The decrease in
NPQ was parallel to a decrease in the chlorophyll contents
in isolated chloroplasts at 15 dpi (0.54 and 0.35 mg
chlorophyll ml™", from control and PPV-infected plants,
respectively).

In the initiation phase of infection (3 dpi), no changes in
the oxidative stress parameters were produced (data not
shown), although an increase in H,O, levels was observed
in the chloroplasts from inoculated plants (Fig. 6A). This
effect can be considered as the early response to PPV in
pea plants. However, in the disease development phase
(15 dpi), PPV infection produced an oxidative stress in

pea leaves as reflected by the increase in lipid peroxida-
tion, protein oxidation, and electrolyte leakage, as well as
the increase in H,O, levels in soluble fractions and
chloroplasts from infected leaves (Figs 6, 7). The increase
in H,O, levels correlated with the observed H,O, and O5
accumulation detected by histochemical analyses (Fig. 3).

PPV infection also produced an alteration in the levels
of antioxidant enzymes in the soluble fractions and
chloroplasts from pea leaves. At 3 dpi, PPV inoculation
produced a drop in APX as well as an increase in POX
activity in the soluble fractions. In chloroplasts, the
observed increase in H,O, correlated with a fall in APX
and POX. Also, an increase in G6PDH was observed in
chloroplasts from inoculated plants (Table 3).

More changes in the levels of antioxidant enzymes due
to the effect of PPV infection were apparent at 15 dpi than
at 3 dpi. In soluble fractions, increases in POX, APX, and
pHMB-insensitive APX, as well as decreases in catalase
and GST, were observed. In chloroplasts, PPV infection
produced a decrease in GPX, GR, and SOD as well as an
increase in monodehydroascorbate reductase (MDHAR)
(Table 4).

Changes in the pea proteome associated with
PPV infection

In order to study the effect of PPV infection on the
differential protein expression at a subcellular level, a
proteomic approach was applied. This proteomic approach
was carried out in chloroplast and soluble fractions from
pea leaves in the initiation phase of PPV infection (early
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Fig. 5. Transmission electron microscopy of Pisum sativum leaves infected with PPV in the phase of disease development (15 dpi).
(A) Parenchymatic cell from a PPV-infected vascular bundle. (B) Detail of the previous micrograph showing a chloroplast with dilated thylakoids.
(C) Detail of a chloroplast from a non-infected plant. (D) Transfer cells from a PPV-infected vascular bundle. (E) Detail of the previous micrograph,
showing abundant pinwheels in the cytoplasm and cytoplasm lamellar bodies close to the cell wall (arrow). (F) Detail of cytoplasm from an infected
parenchymatic cell showing abundant pinwheels. (G) Parenchymatic cell with abundant virus particles in the cytoplasm (arrows). (H) Detail of an
infected parenchymatic cell showing virus particles in the cytoplasm (arrows). (I) Detail of a transfer cell showing a pinwheel and virus particles
perpendicular to the cell wall. Chl, Chloroplast; M, mitochondria; P, pinwheels; PC, parenchymatic cell; S, starch grain; SE, sieve tube element; TC,

transfer cell.

response, 3 dpi) and in the elaboration phase (disease
development, 15 dpi).

Soluble fractions showed some chloroplastic contamina-
tion. In previous work, it was estimated that in pea plants
the degree of chloroplastic contamination in soluble
fractions is around 20% (Hernandez et al., 2000). The
contamination was much higher in soluble fractions from
PPV-infected leaves than in control leaves. This proves
that chloroplasts from infected plants had a higher degree

of membrane damage, which correlated with the increased
H,0, levels detected in chloroplasts.

After 2D gel electrophoresis analyses, the spots where
expression increased or decreased strongly (3-fold) were
selected (Figs 8, 9; Tables 5, 6). Ion trap analysis provided
additional data about proteins that were not identified by
peptide mass fingerprint. Thus, at 3 dpi, some spots not
identified by MALDI-TOF (spots 33, 34, 40, 41, 43, and
48 in the soluble fraction and spot 27 in the chloroplastic
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Table 2. Fluorescence parameters measured in control and
PPV-infected pea leaves in the phase of disease development
(15 dpi)

Data represent the means *£SE from 10 repetitions. Differences from

control values are significant at P <0.05 (a), according to Duncan’s
multiple range test.

Fluorescence parameters Control plants PPV-infected plants

F/F, 0.874+0.006 0.856:0.007
F,F, 0.838+0.003 0.837+0.003
Dpsyy 0.114+0.008 0.1080.007
ap 0.145+0.010 0.134%0.009
NPQ 0.170=0.010 0.116%=0.007 a
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Fig. 6. Effect of PPV infection on H,0, contents in different cell
fractions from pea leaves during the initiation (3 dpi, early response)
(A) and the elaboration (15 dpi, disease development) (B) phases of
disease development. Hc, Homogenate from control leaves; Hi,
homogenate from inoculated leaves; Fsc, soluble fraction from control
leaves; Fsi, soluble fraction from inoculated leaves; Chc, chloroplast
from control leaves; Chi, chloroplast from inoculated leaves. Data
represent the means *standard errors of at least 3 replicates. Differ-
ences from control values were significant at P <0.05 (a) and P < 0.01
(b) according to Duncan’s multiple range test.

fraction) (Fig. 8; Table 5) were identified by means of ion
trap analysis, and in the soluble fraction PPV produced
a decrease in all these polypeptides (Table 5). In the early
response to PPV, transketolase (spots 33 and 34 in Fig. 8),
an enzyme involved in both the oxidative pentose
phosphate pathway (OPPP) and the Calvin cycle, de-
creased by effect of infection. Interestingly, spots corre-
sponding to the same protein were enhanced by PPV
infection at 15 dpi (spots 8 and 9 in Fig. 9; Table 6). A
spot corresponding to the PPV CP (spot 23) was only
observed in the soluble fraction from infected plants in the
phase of disease development but not during the initiation
phase (Fig. 9; Table 6).

PPV produced an alteration in some polypeptides
related with the photosynthetic process. At 3 dpi,
decreases in Rubisco (spot 13) and oxygen-evolving

enhancer (OEE) complex (spot 28) (Table 5; Fig. 8) were
noticed in the chloroplastic fraction. At 15 dpi, a decrease
in Rubisco (spots 31, 33, 34, 35, and 36) as well as in
three polypeptides showing homology with the OEE
complex was also observed (38, 39, and 40) (Table 6;
Fig. 9). In addition, a fall in a polypeptide with homology
to the PSII stability factor was produced (spot 37 in Fig. 9;
Table 6). Finally, in chloroplasts from 15 dpi plants, PPV
increases aldolase (spots 47 and 48 in Fig. 9; Table 6).

Discussion

The pea cultivar Alaska is very susceptible to PPV, as
shown by the strong chlorosis symptoms observed at 15
dpi. At 3 dpi, no symptoms were observed and ELISA
and RT-PCR showed a weak presence of the virus. The
microscopy studies demonstrated the presence of PPV in
the vascular-associated cells but not in the sieve elements
or the xylematic vessels (Figs 4, 5). In in vitro peach cv.
GF305 infected with a GFP-tagged PPV, the GFP signal
was visible in the cytoplasm, near the cell wall of
mesophyll and epidermal cells (Lansac et al., 2005). In
PPV-infected pea plants, the GFP signal was clearly
associated with chlorosis symptoms as well as with ROS
generation; this was also observed in PPV-infected peach
and tobacco plants. However, both in peach and in
tobacco plants, the PPV-associated fluorescence was
found in the vascular vessels (Lansac et al., 2005;
Alamillo ef al., 2006). These differences could be due to
different factors, including the different plant species
used, the PPV clone, and the inoculation methods—
tobacco plants were inoculated by infiltration with
Agrobacterium tumefaciens (Alamillo et al., 2006),
whereas in vitro peach plants were inoculated by shoot
tip grafting (Lansac et al., 2005).

In the phase of disease development (15 dpi), PPV
produced some ultrastructural alterations in infected pea
plants, mainly in chloroplasts. These alterations correlated
with the decrease in NPQ, the accumulation of chloro-
plastic H,O,, and the imbalance of chloroplastic antioxi-
dant systems. These effects on chloroplast ultrastructure
seem to be a general stress response, because they have
been described previously, both under biotic and abiotic
stress conditions (Hernandez et al., 1995, 2004, 2006;
Morales et al., 2001).

The levels of lipid peroxidation, protein oxidation, and
electrolyte leakage, as well as ROS accumulation, are
oxidative stress parameters commonly used to assess the
extent of cell damage produced under different stress
situations (Hernandez et al., 1995, 2001a; Diaz-Vivancos
et al., 2006). At 15 dpi, PPV infection produced an
oxidative stress in pea plants as observed by the increases
in some oxidative stress parameters in leaves (Fig. 7). By
contrast, in the initiation phase of the infection process
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Fig. 7. Effect of PPV infection on some oxidative stress parameters of pea plants in the phase of disease development (15 dpi). (A) Protein oxidation
(measured as carbonyl-proteins); (B) lipid peroxidation (measured as TBARS); (C) electrolyte leakage. Data represent the means *standard errors of
at least three replicates. Differences from control values were significant at P <0.05 (a), P <0.01 (b), or P <0.001 (c), according to Duncan’s multiple

range test. Control or Infected in (A) and (B); x-axis as in (C).

(3 dpi), although no changes were observed in the
oxidative stress or in the fluorescence parameters, an
increase in H,O, took place in the chloroplasts but not in
the soluble fractions (Fig. 6). This observation indicates
that an alteration in the chloroplastic metabolism is
produced in the early response to PPV.

The observed oxidative stress produced by the PPV
infection was correlated with changes in the antioxidative
system of pea plants at the subcellular level. Changes
were more prominent at 15 dpi than at 3 dpi. The
chloroplastic H,O, accumulation at 3 dpi correlated with
a decrease in the enzymatic mechanisms involved in
H,0, elimination in this cell compartment (POX and
APX activities) (Table 3). At 15 dpi, although an
important increase in H,O,-scavenger enzymes took place
in the soluble fractions (pHMB-sensitive APX, pHMB-
insensitive APX, and POX), H,O, accumulated in this
fraction. In parallel, a drop in catalase was detected
(Table 4). A decrease in catalase activity was also
described in PPV-infected apricot leaves (Hernandez
et al., 2006) and in Tobacco mosaic virus (TMV)-infected
Nicotiana glutinosa L. plants (Yi et al., 1999). In higher
plants, catalase is localized mainly in peroxisomes (del
Rio et al., 1998). The decrease in catalase observed in the
phase of disease development (15 dpi) could have
contributed to an increase in peroxisomal H,0,, that could
also have diffused through the peroxisomal membrane

into the cytosol (del Rio et al., 1998), thus contributing to
the detected H,O, accumulation in the soluble fraction and
increasing the risk of oxidative damage. A strong decrease
in catalase has also been described in peroxisomes from
senescent leaves, suggesting a role for peroxisomes in the
oxidative mechanisms of leaf senescence (del Rio et al.,
1998). Increased lipid and protein oxidation was seen in
PPV-infected pea leaves at this stage, which could also
indicate senescence. So, a possible role for peroxisomes
as a putative source of ROS generation during the phase
of disease development could also be suggested.

There are an increasing number of studies using
proteomic approaches to study metabolic changes in
response to different environmental stresses. For example,
the effect of TMV infection in tomato fruits (Casado-Vela
et al., 2006), rice yellow mottle virus infection in rice
(Brizard et al., 2006), salt stress in tobacco apoplast (Dani
et al., 2005), and the response to boron deficiency (Alves
et al., 2006) have been studied recently using proteomic
techniques.

Most of the changes observed for protein expression at
the subcellular level resulting from PPV infection were
related with photosynthesis and carbohydrate metabolism
(see Tables 5, 6). Both transketolase and G6PDH are
enzymes from the OPPP that play an important role in
protection from oxidative stress (Mao-Feng et al., 2006).
In the early response to PPV, the OPPP appeared to be
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Table 3. Effects of PPV on antioxidant enzymes in soluble fractions and chloroplasts from pea leaves in the initiation phase of
infection (3 dpi, early response)

Data represent the means *=SE from at least three repetitions. Differences from control values are significant at P <0.05 (a), P <0.01 (b), or P <0.001 (c),

according to Duncan’s multiple range test. nd, Not detectable pHMB-sensitive APX, pHMB-insensitive APX, MDHAR, dehydroascorbate reductase

(DHAR), GR, and GPX are expressed as nmol min~" mg~ protem GST, POX, and G6PDH are expressed as pmol min~" mg~" protein Catalase
is expressed as mmol min~' mg~" protein and SOD as U mg ' protein.

Enzymatic activity Soluble fraction Chloroplasts

Control PPV-inoculated Control PPV-inoculated
pHMB-sensitive APX 575%56 356*2 a 716 33+£1.43b
pHMB-insensitive APX nd nd nd nd
MDHAR 71.7£14.7 67.7£7.3 10.8£0.3 13.2*1.0
DHAR 20.6*3.6 23.5%53 14.4+2.1 10.1£1.2
GR 34.6+4.3 38.8+5.1 13.2*1.7 12.1£1.6
GST 9.8+0.9 11.6+0.6 nd nd
GPOX nd nd 38.9+1.9 32.6%0.5
POX 180*1 258+7 ¢ 9.6+1.1 6.5+09 b
SOD 51.7%£1.3 443+3.6 20.4*1.3 16.4£0.5
G6PDH 243*1.0 24.9+2.8 2.62+0.04 342+0.13 b
Catalase 82.6+3.8 79.9+t4.3 nd nd

Table 4. Effects of PPV infection on antioxidant enzymes in soluble fractions and chloroplasts from pea leaves in the elaboration
phase (15 dpi, disease development)
Data represent the means = SE from at least three repetitions. Differences from control values are significant at P <0.05 (a), P <0.01 (b), or P <0.001 (c),

according to Duncan’s multlple range test. nd, Not detectable. pHMB-sensitive APX, pHMB msensmve APX, MDHAR, DHAR, GR, and GPX are
expre@qed as nmol min~' mg protem GST, POX, and G6PDH are expressed as umol min~' mg~" protein. Catalase is expressed as mmol min ™'

mg proteln and SOD as U mg— protem

Enzymatic activity Soluble fraction Chloroplasts

Control PPV-inoculated Control PPV-inoculated
pHMB-sensitive APX 2696 309+9 a 44.0x1.9 38.8+3.8
pHMB-insensitive APX 13.5+0.4 23.8%15b nd nd
MDHAR 444+22 50.3%7.0 9.60.9 129+0.5 a
DHAR 11.4+2.0 11.1=1.9 4.3*+0.4 42+1.1
GR 26.6+2.5 33.3%£3.5 16.1+0.2 99*1.8¢c
GST 10.60.8 79204 a nd nd
GPOX nd nd 74.3%2.8 57.5+x4.4 a
POX 73.3*+1.1 142.6*5 ¢ 6.5%0.7 6.10.3
SOD 12.9+0.9 12.4x2.1 8.8£0.4 5.7*+04b
G6PDH 21.9%+0.5 18.1%0.6 1.2*0.2 1.6%£0.3
Catalase 58.1£3.1 38.4*4.7 a nd nd

increased in chloroplasts but not in the soluble fraction,
since an increase in GO6PDH activity took place only in
chloroplasts (Table 3) and, in addition, a decrease in
transketolase was detected in soluble fractions in the 2D
electrophoresis gels (Table 5). Interestingly, at a longer
time (15 dpi), transketolase increased in the soluble
fraction (Table 6). The OPPP, besides its important
function in NADPH production, also supplies ribose-
5-phosphate for the synthesis of ribonucleotides, which
can be demanded for virus replication in the cytosol.

The fact that PPV CP was observed by 2D gel
electrophoresis only in soluble fractions from PPV-
infected plants agrees with the current knowledge that
potyviruses replicate and accumulate in the cytoplasm,
although there are some published results that found some

association of these viruses with chloroplasts (Jiménez
et al., 2006). This result correlates with the microscopy
observations, which showed the presence of GFP and/or
PPV in the cytosol of the infected cells (Figs 4, 5). It is
not surprising that PPV CP was not detected in the 3 dpi
sample, given the low level of virus accumulation at this
time, as revealed by the ELISA and RT-PCR analyses.

In chloroplasts, a decrease in polypeptides related with
photosynthesis occurred. Already in the initial phase of
infection, a decrease in polypeptides showing homology
with Rubisco and the OEE protein/complex was observed.
The OEE protein/complex has been implicated in photo-
synthetic oxygen evolution and is associated with the PSII
complex, the site of the oxygen evolution in all higher
plants and algae (Mayfield er al., 1987). In the phase of
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fractions from control and PPV-infected pea plants in the initial phase
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disease development, besides the decreases in Rubisco
and OEE proteins, a decline in a polypeptide showing
homology with the PSII stability/assembly factor also
occurred. This protein regulates selectively the biogenesis
of PSII and it is essential for the assembly of the reaction
centre of PSII (Pliicken et al., 2002).

It seems that PSII is one of the targets affected by PPV.
Different studies revealed that plant viruses produce
alterations in the photosynthetic parameters of their host,
essentially at the PSII level (Van Kooten et al., 1990;
Rahoutei et al., 2000), although the mechanism of action
of the viral infection against PSII remains unclear
(Balachandran er al., 1997; Rahoutei et al., 2000). In
CMV-infected tobacco plants, the observed inhibition of
PSII activity was associated with a decrease in the amount
of the OEE polypeptides (Takahashi and Ehara, 1992),
and similar results were obtained in N. benthamiana
plants infected with different strains of pepper mild mottle
virus and paprika mild mottle virus (Rahoutei et al., 2000;
Perez-Bueno et al., 2004). Several authors demonstrated
that viral infection can induce in its host a decreased
amount of proteins and mRNAs coding for different
Calvin cycle enzymes, as well as for the OEE proteins
(Rahoutei et al., 2000; Perez-Bueno et al., 2004). Recent
data have shown that damage to OEE activity in virus-
infected plants results in a higher viral accumulation in the
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Fig. 9. Reference 2D electrophoretic patterns of soluble and chloroplast
fractions from control and PPV-infected pea plants in the phase of
disease development (15 dpi): (A) soluble fraction from control leaves;
(B) soluble fraction from inoculated leaves; (C) chloroplast from control
leaves; (D) chloroplast from inoculated leaves.

infected plants (Perez-Bueno et al., 2004). In the present
study, it seems that, at 15 dpi PPV, effects on photosyn-
thesis were mediated by reductions in the NPQ parameter,
the amount of Rubisco, and several polypeptides associ-
ated with PSII—three polypeptides with homology with
OEE and the PSII stability/assembly factor. The decrease
in Rubisco can disturb CO, fixation and, accordingly,
reduced starch accumulation. In this sense, a correlation
between decreases in starch content and Rubisco activity
has been described previously in soybean (Scarponi et al.,
1996).

The PPV effects on photosynthesis during the early
phase of infection seem to be also mediated by a reduction
in the amount of Rubisco and OEE polypeptides. In
addition, at this stage, the decrease in APX observed in
chloroplastic fractions could also suggest disruption in the
water—water cycle. When this cycle is disrupted by
environmental conditions, CO, assimilation is lowered
and PSI complex can be inhibited (Asada, 1999). In this
case, the photosynthetic components would be over-
reduced and this would be reflected in the fluorescence
parameters, but at this stage no change in these parameters
was observed. However, it is reported that the accumula-
tion of H,O, in chloroplasts can lower CO, assimilation
(Asada, 1999). Moreover, the decrease in Rubisco
observed in both infection stages, as mentioned above,
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Table 5. Effect of PPV infection on protein expression in the chloroplasts and soluble fractions from pea plants in the initial phase of

infection (3 dpi, early response)

Spots 27, 33, 34, 40, 41, 43, 45, and 48 were identified by ion trap analysis. All the others were identified by peptide fingerprinting.

Spot no. Masscot score pl theor. MW theor. (Da) Identification Variation in expression
Chloroplast
3,16 90-228 4.96-5.29 47293-55214 ATP synthase 3 subunit Decrease
19, 23, 24, 25 90-296 4.96-5.19 47293-53778 ATP synthase 3 subunit Induced
11, 20, 21 150-240 5.47 55031 ATP synthase o chain Increase
27 590 5.60 41410 ATP synthase y chain Increase
13 171 5.54 48186 Rubisco Decrease
28 153 8.32 49426 Oxygen-evolving enhancer protein Decrease
Soluble fraction
37 98 5.19 52124 ATP synthase beta subunit Decrease
33,34 168244 6.00 81475 Transketolase Decrease
40 60 57355 GTP-bindin protein Decrease
40 10 60281 Leucine aminopeptidase Decrease
41 190 50555 1-Deoxy-D-xylulose 5-phosphate Decrease
reductoisomerase
43 110 39026 Phosphoribulokinase Decrease
43 110 93891 Elongation factor 2 Decrease
43 110 6.30 45345 Succinyl CoA ligase/synthetase Decrease
43,45 210 8.48 50177 Phosphoglycerate kinase Decrease
45 210 50177 Chloroplastic precursor Decrease
Phosphoglycerate kinase
43, 48 70-170 8.20 48054 Rubisco activase Decrease
54, 55, 57 91-342 6.1-6.23 51691-52356 Rubisco Increase

Table 6. Effect of PPV infection on protein expression in the chloroplasts and soluble fractions from pea plants in the elaboration

phase (15 dpi, disease development)
All the spots were identified by peptide fingerprinting.

Spot no. Masscot score pl theor. MW theor. (Da) Identification Variation in expression
Chloroplast

27, 28, 29, 32 266495 491-5.22 50887-53383 ATP synthase 3 subunit Increase
41,42,43,4 4 207-256 5.47 55031 ATP synthase o chain Increase
46,49 74-147 8.49 62242 ATP synthase y chain Increase
31, 33, 34, 35, 36 209-396 5.54-6.60 48186-51983 Rubisco Decrease
38, 39, 40 197-323 8.32 49426 Oxygen-evolving enhancer protein Decrease
37 93 63787 Photosystem II stability factor Decrease
47, 48 70-74 56669 Aldolase Increase
Soluble fraction

8,9 119-124 6.00 80087 Transketolase Increase
20 142 5.54 48186 Rubisco Increase
23 159 5.56 35333 Coat protein Induced
21 91 5.93 31474 Cytosolic glutamine synthetase Increase

can result in a diminished CO, fixation, which can
produce a decrease in the levels of NADPH, the major
acceptor of electrons in PSI. Depletion of NADP*
accelerates the reduction of O, to O5, which is immedi-
ately converted to HO, by SOD (Asada, 1999). So, in
both infection phases, the increase in chloroplastic H,O,
in PPV-infected plants could be due to this mechanism,
which can be influenced also by the reduction of
chloroplastic APX and POX activities at 3 dpi and the
decrease in the NPQ parameter and GPX activity at 15
dpi. Furthermore, the production of H,O, in chloroplasts
may, potentially, inhibit the synthesis of nuclear-encoded
proteins because of its ready permeation of membranes
(Asada, 1999).

Results indicate that an alteration in the chloroplastic
metabolism is produced during the early response to PPV
infection favouring the accumulation of ROS in this cell
organelle. This oxidative stress is more pronounced during
the development of the disease judging from the increase
in oxidative stress parameters as well as the imbalance in
the antioxidative systems, mainly at the chloroplastic
level. According to the proteomic studies, PPV infection
affects mainly the photosynthetic metabolism, even during
the initiation phase of infection. It seems that PPV has an
effect on PSII, directly or indirectly, which could disturb
the photosynthetic electron chain that can induce an
increase in ROS generation, suggesting that chloroplasts
can be a source of oxidative stress during both the
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initiation (3 dpi) and the elaboration (15 dpi) phases of
viral disease development.
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